Prediction of Left Ventricular Ejection Fraction Using Wall Motion Score Index

Validation in a Large Patient Population in Clinical Practice

Amnon Eitan MD, Shemy Carasso MD, Diab Mutlak MD, Jonathan Lessick MD Dsc, Izhak Kehat MD PhD, Doron Aronson MD, Shimon A. Reisner MD, Yoram Agmon MD

Echocardiography Laboratory and Heart Valves Clinic
Rambam Health Care Campus
Technion – Israel Institute of Technology
Haifa

IHS 60th Annual Scientific Meeting
Apr 22 2013, Jerusalem
Disclosure

No conflicts of interest (all co-authors)
Background

- Left ventricular ejection fraction (LVEF) is an important clinical and prognostic factor in pts with cardiovascular disease
- Echocardiography is the most common clinical imaging technique used to evaluate LVEF
 - Several quantitative techniques for measuring LVEF
 - LVEF – commonly assessed qualitatively (visual estimation)
 Visual estimation of LVEF – highly observer-dependent
- Wall motion score index (WMSI) – represents LV segmental Fx
 - WMSI = \(\Sigma \) wall motion scores / # of scores segments (16 segments)
 - Correlation between WMSI & LVEF – intuitive
 Not assessed in large pt populations in routine clinical practice
Objectives

• To evaluate the relation between WMSI and LVEF in a large pt population undergoing echocardiography in routine clinical practice
• To examine whether any additional echocardiographic parameters modify this relation
• To develop a formula that predicts LVEF according to:
 - WMSI
 - Additional interacting factors
• To validate this formula in a large pt population
Methods
Data Collection

- Computerized database – echocardiographic laboratory
- 2000 consecutive pts with Dx: “LV segmental wall motion abnormality”
- Collection of relevant data from echocardiographic reports
 - Demographics / body size
 - Heart rate / rhythm
 - Left ventricle
 - Size / wall thickness / remodeling
 - Coronary artery territory (LAD, non-LAD, multiple territories)
 - Valve dysfunction (> moderate)
Statistical Analysis

- Total population (n = 2000)
 - Correlation: WMSI ↔ LVEF
 - Modifiers of WMSI ↔ LVEF relationship (interactions)

- Test group (1st 1000)
 - Predictors of LVEF (WMSI + other predictors)
 - Multivariate linear regression analysis → regression equation

- Validation group (2nd 1000)
 - Calculation of “predicted LVEF” using regression equation
 - Relationship between predicted LVEF ↔ LVEF (original)
 - Correlation & Bland-Altman analysis

- ROC analysis
 - WMSI → LV dysfunction (ASE categories of LV dysfunction)
Results
Total Study Population (n=2000)

- Age (yrs) 67±13
- Male 74%
- LV dilatation (qualitative)
 - Mild 24.6%
 - Moderate-severe 13.8%
- LVEDd (cm) 5.4±0.7
- LVH (qualitative) 24.2%
- HR (min⁻¹) 72±15
- Irregular heart rhythm 13.1%
- Coronary artery territory
 - LAD 9.4%
 - Non-LAD (RCA / LCx) 62.8%
 - Multiple territories 27.8%
- MR > moderate 7.8%
Results

WMSI vs. LVEF

$$r = -0.92$$
$$P < 0.001$$
(n=2000)
Linear Regression Analysis

Univariate Predictors of LVEF – Test Group (n=1000)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>R^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMSI*</td>
<td>0.84</td>
<td><0.001</td>
</tr>
<tr>
<td>LV size (cat)*†</td>
<td>0.42</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEDd*</td>
<td>0.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Territory**‡</td>
<td>0.29</td>
<td><0.001</td>
</tr>
<tr>
<td>RWT</td>
<td>0.19</td>
<td><0.001</td>
</tr>
<tr>
<td>LV mass</td>
<td>0.11</td>
<td><0.001</td>
</tr>
<tr>
<td>HR*</td>
<td>0.03</td>
<td><0.001</td>
</tr>
<tr>
<td>MR > moderate*</td>
<td>0.03</td>
<td><0.001</td>
</tr>
<tr>
<td>IV septum, PW</td>
<td>0.01</td>
<td>0.002</td>
</tr>
<tr>
<td>Male*</td>
<td>0.01</td>
<td>0.002</td>
</tr>
<tr>
<td>BMI</td>
<td>0.006</td>
<td>0.03</td>
</tr>
</tbody>
</table>

- **Non-significant**
 - Age, BSA
 - Regular rhythm
 - LV wall thickness (qual)
 - AR > moderate

* Negative associations
† 1 = normal LV size; 2 = mildly dilated; 3 = mod-severely dilated (visual assess.)
‡ 1 = LAD; 2 = non-LAD; 3 = multiple territories
Results

Multivariate Predictors of LVEF

Test Group (n=1000)

- Significant independent predictors ($\Delta R^2 > 0.01$):

<table>
<thead>
<tr>
<th>Stand. coefficient (β)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMSI</td>
<td>-0.85</td>
</tr>
<tr>
<td>LV size (category)</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

Regression equation

\[
LVEF = 95.1 - 26.9 \times \text{WMSI} - 2.0 \times \text{LV size (cat)}^*
\]

* 1 = normal LV size; 2 = mildly dilated; 3 = mod.-severely dilated (eyeballing)
Results

LV size \rightarrow WMSI \leftrightarrow LVEF Relationship

LV size (categorical)
1=normal, 2=mild↑, 3=mod+↑
Results

Prediction of LVEF (Regression Equation)

Validation Group (2nd n=1000)

- **Correlation**
 - $R^2 = 0.85$
 - $P < 0.001$

- **Bland-Altman analysis**
 - Mean ΔLVEF (%) = 0.4 (95% CI -9.8-10.1)
 - Mean absolute ΔLVEF (%) = 4.0 (0.1-11.5)
Results

Prediction of Qualitative LV Dysfunction – WMSI

- **Mild+ LV dysfunction**
 - LVEF <54%
 - AUC = 0.95 (0.94-0.96)
 - \(P < 0.001 \)
 - WMSI \(\geq 1.47 \)
 - Sensitivity = 0.88
 - Specificity = 0.88

- **Moderate+ LV dysfunction**
 - LVEF <44%
 - AUC = 0.97 (0.96-0.98)
 - \(P < 0.001 \)
 - WMSI \(\geq 1.70 \)
 - Sensitivity = 0.89
 - Specificity = 0.92

- **Severe LV dysfunction**
 - LVEF <30% (severe LVDFx)
 - AUC = 0.98 (0.97-0.98)
 - \(P < 0.001 \)
 - WMSI \(\geq 2.16 \)
 - Sensitivity = 0.92
 - Specificity = 0.93
Summary

• WMSI correlates strongly with LVEF
 - This correlation – modified by LV size
• LVEF can be predicted using a regression equation
 - Combining WMSI & estimated LV size
• Regression equation – high accuracy
 - Validation in a large group of pts
• LV dysfunction (categories) can be predicted using WMSI cutoffs
A new tool for estimating left ventricular ejection fraction derived from wall motion score index.

- 243 TTE and radionuclide angiography (RNA) performed
- First 150 patients established a correlation between LV WMSI and RNA EF.
 Regression equation (RNA LVEF=92.8-25.8 x WMSI)
- Correlated well with RNA EF (r=0.86) in 93 pts.

Novel wall motion score-based method for estimating global left ventricular ejection fraction: validation by real-time 3D echocardiography and global longitudinal strain

Vittorio Palmieri¹*, Cesare Russo², Antonietta Buonomo¹, Emiliano A. Palmieri¹, and Aldo Celentano¹

- EF of 63% if all segments were normal, 49% if all were mildly hypokinetic, 35% if all were moderately hypokinetic and 21% if all were severely hypokinetic.
- 40 random patients

Table 3 Reliability analysis and regression equations

<table>
<thead>
<tr>
<th>Items</th>
<th>Intraclass correlation coefficients</th>
<th>95% confidence interval</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMSI-EF vs. 3D based EF</td>
<td>0.94</td>
<td>0.89–0.97</td>
<td><0.001</td>
</tr>
<tr>
<td>WMSI-EF vs. Biplane EF</td>
<td>0.94</td>
<td>0.89–0.97</td>
<td></td>
</tr>
<tr>
<td>Biplane EF vs. 3D-EF</td>
<td>0.94</td>
<td>0.88–0.97</td>
<td></td>
</tr>
<tr>
<td>Regression equations</td>
<td>B (β)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r²; standard error of estimates (%)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>WMSI-EF predicting 3D-EF</td>
<td>0.86 (0.95)</td>
<td>0.89; 6.2</td>
<td>6</td>
</tr>
<tr>
<td>WMSI-EF predicting 2D-EF</td>
<td>0.84 (0.96)</td>
<td>0.91; 5.4</td>
<td>9</td>
</tr>
<tr>
<td>Biplane EF predicting 3D-EF</td>
<td>0.98 (0.95)</td>
<td>0.90; 6.1</td>
<td>−1</td>
</tr>
</tbody>
</table>
Prognostic implications of ejection fraction from linear echocardiographic dimensions: The Strong Heart Study

Richard B. Devereux, MD, a Mary J. Roman, MD, a Vittorio Palmieri, MD, a Jennifer E. Liu, MD, a
Elisa T. Lee, PhD, b Lyle G. Best, MD, c Richard R. Fabsitz, MA, d Richard J. Rodheffer, MD, c and
Barbara V. Howard, PhD f New York, NY, Timber Lake, SD, Bethesda, Md, Washington, DC, and Rochester, Minn

- EF of 63% if all segments were normal, 49% if all were mildly hypokinetic, 35% if all were moderately hypokinetic and 21% if all were severely hypokinetic.

Freedom from cardiovascular death (vertical axis), adjusted for covariates described in the text, is similarly lower in SHS participants with mildly reduced EF (40%-54%) or severely reduced EF (<40%) compared to those with normal EF from 2-D echocardiographic wall motion scores.
A prospective comparison of echocardiographic wall motion score index and radionuclide ejection fraction in predicting outcome following acute myocardial infarction

G I W Galasko, S Basu, A Lahiri, R Senior

• 120 consecutive patients treated with thrombolysis following AMI

• Confirmed the very close correlation between WMSI and RNV EF

Heart (British Cardiac Society) 2001; 86(3):271–6.
Rapid Estimation of Left Ventricular Ejection Fraction in Acute Myocardial Infarction by Echocardiographic Wall Motion Analysis

Berning J. · Nielsen J.R. · et al

• Using radionuclide ventriculography (RNV) and contrast ventriculography measurements of LVEF for comparison.

• ECHO-LVEF from 41 patients correlated well with the reference methods \(y = 1.5x - 14.7, r = 0.93\); linear regression analysis; 95% confidence limit for a single determination of ECHO-LVEF was 17.2.

Cardiology 1992;80:257–266
Usefulness of the severity and extent of wall motion abnormalities as prognostic markers of an adverse outcome after a first myocardial infarction treated with thrombolytic therapy.
Carluccio E, Tommasi S, et al

- Most powerful predictor of a subsequent event was a resting WMSI \(\geq 1.50 \) before discharge.
- In patients with a first AMI who underwent thrombolysis wall motion abnormalities are important independent predictors of cardiac events.

Determinants of ΔLVEF

- Logistic regression – predictor(s) of absolute ΔLVEF > 10%:
 - Single significant predictor – LVEF
 \[OR = 0.75 \text{ per 10\% LVEF} \]
 \[(95\% CI 0.61-0.93; \ P < 0.01) \]
Study Limitations

- Retrospective analysis using a prospectively collected database
- Referral bias – pts undergoing echocardiography in a tertiary medical center
- Comparison of 2 qualitative techniques (visual assessment)
 - WMSI ↔ LVEF
 - Reflects common clinical practice
- Additional qualitative parameters analyzed (LV size / wall thickness)
 - Secondary analyses using quantitative LV parameters (LVEDd, LVM)
- Relatively small subgroups of pts with pure involvement of LAD territory
Conclusions

- WMSI can be used to predict visually-estimated LVEF in routine clinical practice
- Calculation of LVEF via WMSI may be used for “cross-checking” of standard visual assessment of LVEF
 - A method for quality-control of visual LVEF assessment?