INADEQUATE REINFORCEMENT OF TRANSMURAL DISRUPTIONS AT BRANCH POINTS SUBTENDS AORTIC ANEURYSM FORMATION IN APOLIPOPROTEIN E-DEFICIENT MICE

> S. David Gertz, MD, PhD Institute for Medical Research—IMRIC Faculty of Medicine The Hebrew University and Hadassah

> > Israel Heart Society Jerusalem, Israel April 23, 2013

DISCLOSURES

Abdominal Aortic Aneurysm

http://vasoftas.com/DownloadableCo ntentHandler.ashx?mediald=0041b0 32-e9d5-4fa9-ac3b-e82d9457ca8b

Roy JVS 11 April 2008

Kumar et al. Robbins Basic Pathol. 8th ed. <u>www.studentconsult.com</u>

LOCATION = BRANCH POINTS, CURVATURES

In the current study we sought to determine why some angiotensin-infused animals do, and others do not, develop aortic aneury

Aortic Aneurysm - Histopathology Normal Aneurysmatic

Zarins ,Xu and Glagov 2001 Atherosclerosis 155:157–164

Tonar et al. Microscopy: Science, Technology, Applications and Education A. Méndez-Vilas and J. Díaz (Eds.) 926 ©FORMATEX 2010;

DISRUPTED ELASTICA, DEPLETION OF SMC

Abdominal Aortic Aneurysm: Angiotensin-Infused Apo E^{-/-}- Mouse

DISRUPTED ELASTICA; FIBROMUSCULAR HYPERPLASIA; INFLAMMATORY INFILTRATES

Gertz <u>Gavish...Gertz et al. Lasers in Surgery and Medicine</u>. 2012, 44(8):664-74.

Low Level Laser Prevents Aneurysm Formation in Angiotensin-infused Apo E-Deficient Mice **High Frequency Ultrasonograpy**

Ratio of U/S diameter of the suprarenal to inter-renal segments:

Control: 1.32+0.11 vs **1.82 ± 0.39**, p=0.0002 by 2-tailed ttest LLLI: 1.29+0.13 vs 1.32 ± 0.014, p=0.49 Gavish...Gertz, et al. Cardiovascular Research, 83(4): 785-792, 2009

Endpoint control

Endpoint LLLI treated

Effect of LLLI on Pre-induced AAA in Apo E^{-/-} Mice Maximal Cross-Sectional Diameter (MCD) of Suprarenal Aorta (B-Mode Ultrasonography)

Maximal aortic diameter (MCD) 2 vs 4 weeks:

Non-treated (n=8): 2.10±0.2 vs 2.33±0.28mm, p=0.04 (by paired 2tttest) LLLI (n=10): 2.24±0.32 vs 2.09±0.56mm, p=0.2

Medial Disruption near Aortic Branch Point (superior mesenteric artery [SMA]) Closed off by Increased Fibromuscular Hyperplasia and Collagen Elaboration in an LLLI Mouse

Experimental Groups

Group	Infusion	Aneurysm	n
AngII-AAA	Angiotensin-II	+	9
Angll-no AAA	Angiotensin-II	-	12
Saline	Saline	-	6
		Total	27

Tramsmural Defect Associated with Aneurysm Near the Origin of the Right Renal Artery

Intermediate Size Transmural Defect of the Aorta Near the Point of Origin of the Superior Mesenteric Artery

Small Transmural Defect of the Aorta Near the Point of Origin of the Celiac Trunk

Group	%Branches with Breaks (Mean #Breaks per mouse)	MaxMM	#Mac	%Col/WO	Col/WO per MaxMM
AngII-AAA (n=9)	69% (2.8±0.7)				
Angll-no AAA (n=12)	58% (2.3±1)				
Sal (n=6)	17% (0.7±0.8)				
AngII: AAA vs no AAA	0.29*				
Angll vs Sal	<0.005*				

MaxMM=missing media; WO=walling off area; %Col/WO = %collagen in the WO; #Mac=number of macrophages per 0.01mm² at the disrupted media and WO area. *by Chi-square or FET as appropriate; **by MW-U test; *by Kruskal-Wallis (p=0.0005) with Conover-Inman as post hoc; NA=not applicable Gertz

Group	%Branches with Breaks (Mean #Breaks per mouse)	MaxMM	#Mac	%Col/WO	Col/WO per MaxMM
AngII-AAA (n=9)	69% (2.8±0.7)	1.94±1.57			
AngII-no AAA (n=12)	58% (2.3±1)	0.65±0.48			
Sal (n=6)	17% (0.7±0.8)	0.07±0.08			
AngII: AAA vs no AAA	0.29*	0.0073**			
Angll vs Sal	<0.005*	0.00003			

MaxMM=missing media; WO=walling off area; %Col/WO = %collagen in the WO; #Mac=number of macrophages per 0.01mm² at the disrupted media and WO area. *by Chi-square or FET as appropriate; **by MW-U test; *by Kruskal-Wallis (p=0.0005) with Conover-Inman as post hoc; NA=not applicable Gertz

Group	%Branches with Breaks (Mean #Breaks per mouse)	MaxMM	#Mac	%Col/WO	Col/WO per MaxMM
AngII-AAA (n=9)	69% (2.8±0.7)	1.94±1.57	32.2±10.3		
Angll-no AAA (n=12)	58% (2.3±1)	0.65±0.48	18.8±10.7		
Sal (n=6)	17% (0.7±0.8)	0.07±0.08	1.3±1.5		
AngII: AAA vs no AAA	0.29*	0.0073**	0.0186†		
Angll vs Sal	<0.005*	0.00003	<0.0006†		

MaxMM=missing media; WO=walling off area; %Col/WO = %collagen in the WO; #Mac=number of macrophages per 0.01mm² at the disrupted media and WO area. *by Chi-square or FET as appropriate; **by MW-U test; *by Kruskal-Wallis (p=0.0005) with Conover-Inman as post hoc; NA=not applicable

Group	%Branches with Breaks (Mean #Breaks per mouse)	MaxMM	#Mac	%Col/WO	Col/WO per MaxMM
AngII-AAA (n=9)	69% (2.8±0.7)	1.94±1.57	32.2±10.3	17.0±12.6	
AngII-no AAA (n=12)	58% (2.3±1)	0.65±0.48	18.8±10.7	43.5±15.4	
Sal (n=6)	17% (0.7±0.8)	0.07±0.08	1.3±1.5	NA	
AngII: AAA vs no AAA	0.29*	0.0073**	0.0186†	0.0009**	
Angll vs Sal	<0.005*	0.00003	<0.0006†	NA	

MaxMM=missing media; WO=walling off area; %Col/WO = %collagen in the WO; #Mac=number of macrophages per 0.01mm² at the disrupted media and WO area. *by Chi-square or FET as appropriate; **by MW-U test; *by Kruskal-Wallis (p=0.0005) with Conover-Inman as post hoc; NA=not applicable Gertz

Group	%Branches with Breaks (Mean #Breaks per mouse)	MaxMM	#Mac	%Col/WO	Col/WO per MaxMM
AngII-AAA (n=9)	69% (2.8±0.7)	1.94±1.57	32.2±10.3	17.0±12.6	0.13±0.15
AngII-no AAA (n=12)	58% (2.3±1)	0.65±0.48	18.8±10.7	43.5±15.4	1.14±1.01
Sal (n=6)	17% (0.7±0.8)	0.07±0.08	1.3±1.5	NA	NA
AngII: AAA vs no AAA	0.29*	0.0073**	0.0186†	0.0009**	0.0001**
Angll vs Sal	<0.005*	0.00003	<0.0006†	NA	NA

MaxMM=missing media; WO=walling off area; %Col/WO = %collagen in the WO; #Mac=number of macrophages per 0.01mm² at the disrupted media and WO area. *by Chi-square or FET as appropriate; **by MW-U test; *by Kruskal-Wallis (p=0.0005) with Conover-Inman as post hoc; NA=not applicable

Human Abdominal Aortic Aneurysms-Infrarenal

L: eMedicine, Med/3443, emerg/27, radio/1, MeSH D017544

- M: http://www.wikidoc.org/index.php/Image:Aortic_aneurysm_35.jpg
- R: http://www.wikidoc.org/index.php/Image:Aortic_aneurysm_35.jpg Gertz

Suprarenal AAA in Angiotensin-infused Apo e^{-/-} Mouse

Conclusions

Transmural defects and inflammatory cell infiltration at branch orifices subtend aneurysm formation in the Ang-II-infused, Apo $E^{-/-}$ mouse.

The extent of the inflammatory response and <u>robustness of the</u> <u>extracellular matrix reinforcement</u> of transmural disruptions at branch orifices by collagen matrix, are important determinants of whether these lesions progress to AAA in the angiotensininfused Apo E^{-/-} mouse.

Early acceleration of reinforcement of transmural defects would appear to be a potential therapeutic target for management of small, slowly progressing aneurysms.

Thank you!

Collaborators:

Lilach Gavish, PhD Ronen Beeri,MD Dan Gilon, MD Chen Rubinstein, MD Yacov Berlatzky, MD Leah Gavish, PhD Atilla Bulut, MD Mickey Harlev, DVM Petachia Reissman, MD

Acknowledgements:

These studies were supported in part by The Israel Science Foundation (grant no. 1298/10), The Rosetrees Trust Research Fund, and Professor Eliyahu Kelman. Dr. Gertz is the Brandman Foundation Professor of Cardiac and Pulmonary Diseases of The Hebrew University of Jerusalem.