THE RIGHT VENTRICLE
IN PULMONARY HYPERTENSION

R. DRAGU

Cardiology Dept.
Rambam Health Care Campus
Rappaport Faculty of Medicine
Technion, Israel
Why the Right Ventricle?

Pulmonary hypertension (PH)

Right ventricle (RV) function

Outcome
RV dysfunction & outcome

Ghio, et al. JACC 2001;37:138-188
RV dysfunction & outcome

A

![Graph showing survival rate over time for NYHA classes I-II, III, and IV.]

B

![Graph showing survival rate over time for 6MWD categories <250 m, 250-350 m, and >350 m.]

NYHA class

6MWD

<table>
<thead>
<tr>
<th>Better prognosis</th>
<th>Determinants of prognosis</th>
<th>Worse prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Clinical evidence of RV failure</td>
<td>Yes</td>
</tr>
<tr>
<td>Slow</td>
<td>Rate of progression of symptoms</td>
<td>Rapid</td>
</tr>
<tr>
<td>No</td>
<td>Syncope</td>
<td>Yes</td>
</tr>
<tr>
<td>I, II</td>
<td>WHO-FC</td>
<td>IV</td>
</tr>
<tr>
<td>Longer (>500 m)^\text{a}</td>
<td>6MWT</td>
<td>Shorter (<300 m)</td>
</tr>
<tr>
<td>Peak O$_2$ consumption $>$15 mL/min/kg</td>
<td>Cardio-pulmonary exercise testing</td>
<td>Peak O$_2$ consumption $<$12 mL/min/kg</td>
</tr>
<tr>
<td>Normal or near-normal</td>
<td>BNP/NT-proBNP plasma levels</td>
<td>Very elevated and rising</td>
</tr>
<tr>
<td>No pericardial effusion TAPSEb $>$2.0 cm</td>
<td>Echocardiographic findingsb</td>
<td>Pericardial effusion TAPSEb $<$1.5 cm</td>
</tr>
<tr>
<td>RAP $<$8 mmHg and CI $>$2.5 L/min/m2</td>
<td>Haemodynamics</td>
<td>RAP $>$15 mmHg or CI $<$2.0 L/min/m2</td>
</tr>
</tbody>
</table>

RV response to PH

- Variable
- Depends on:
 - PH type
 - Onset rapidity
 - PH severity

Prediction of future dysfunction

LIMITED
RV Chamber characteristics

- Thinner free wall
- Lower mass
- Different geometry
- Greater distensibility
- Operates at higher volumes

Difference from LV
RV response in PH

A

RCA (IPAH #2)

Systole

Diastole

Flow (mL/s)

250 500 750 1000

Time (ms)

LAD (IPAH #2)

Systole

Diastole

Flow (mL/s)

250 500 750 1000

Time (ms)

B

RCA (Control #2)

Systole

Diastole

Flow (mL/s)

250 500 750 1000

Time (ms)

LAD (Control #2)

Systole

Diastole

Flow (mL/s)

250 500 750 1000

Time (ms)

Wolferen et al. Eur Heart J 2008; 29:120-7
RV response to PH

RV afterload

- **PVR**
 - used in clinical practice as equivalent for afterload
 - may not reflect its complex nature

- **Pulmonary arterial system**
 - Low impedance / high distensible
 - High compliance
 - Low resistance
 - Low peripheral pulse wave reflection coefficient
Systemic circulation

- Resistance
 - small arteries
 - arterioles

- Compliance
 - aorta

Pulmonary circulation

- Resistance
 - small arteries
 - arterioles

- Compliance
 - entire pulmonary circulation
Windkessel model

Veins Heart Elastic arteries PVR

2-element WK

C R
RC constant

Decrease steady afterload

\[C = \frac{\tau}{R} \]

Patient A

Patient B
Capacitance and outcome

Mahapatra et al. JACC 2006;47, 799-806

Dragu et al. IHS Congress 2013
Capacitance and outcome

Dragu et al. IHS Congress 2013
Assessment of RV function in PH

- Mechanisms of RV failure in PH
- Prognostic implications
- Effect of PH-specific tx on RV
Parameters that reflect RV function

Echocardiography

- RA area\(^1\)
- RV Area\(^1\)
- TAPSE\(^1,2\)
- Tei index\(^3\)
- RV fractional area change\(^2\)
- Degree of tricuspid regurgitation\(^2\)
- Pericardial effusion\(^4\)
- Inferior vena cava collapsibility\(^2\)
- Superior vena cava flow velocity pattern\(^2\)

MRI

- RV EF% and SV\(^6\)
- Mass index\(^7\) and geometry\(^8\)

RHC

- Right atrial pressure\(^9\)
- Cardiac index\(^10\)

Biomarkers

- NT-proBNP\(^{11}\)
- Troponin T\(^{12}\)

Echo

- **Variables in good correlation with:**
 - Hemodynamics
 - Anatomy

- **Limited visualisation of RV:**
 - Complex geometry
 - Extensive trabeculations
 - Retrosternal position
Echo - Pericardial effusion

Echo - Pericardial effusion

Echo - TAPSE

- Longitudinal movement of lateral tricuspid annulus towards apex at peak systole
- Abundant longitudinal fibres
- Correlates with RV systolic function

Normal TAPSE

Low TAPSE

Echo - TAPSE

Echo - RV morphology

Survival curves in patients with RV wall thickness ≤ 6.6 mm

Survival curves in patients with RV wall thickness > 6.6 mm

- Death rate per 100 patient-year:
 - RV diameter < 36.5 mm
 - 6.6 (95%CI 3.3-13.2)
 - RV diameter > 36.5 mm
 - 15.9 (95%CI 9.4-26.8)

Echo - 2D longitudinal strain

- Percentage change in myocardial deformation
- Doppler or speckles
- More negative = better contractility
- Unlike TAPSE it takes whole RV into account
- Load dependent

Echo - 2D longitudinal strain

Loop diuretics

Oedema despite loop diuretics

Proportion with symptom progression, %

Survival, %

Follow-up, years

-20 to ≤-20
-12.5 to >-20
-12.5 to ≤-12.5

-20
-12.5
0
20%
40%
60%
80%
100%

Mild (> -20%)
Moderate (-20 to -12.5%)
Severe (< -12.5%)

Echo - 3D

- Rapid acquisition of full volume 3D data
- Accurate & reproducible measures of RV

<table>
<thead>
<tr>
<th></th>
<th>ESV (ml)</th>
<th>EDV (ml)</th>
<th>EF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMR</td>
<td>0.89</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>CT</td>
<td>(-9ml)</td>
<td>(-14ml)</td>
<td>(-2%)</td>
</tr>
<tr>
<td>3DE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 64 IPAH prevalent patients
- Measured at baseline by MRI
- Mean follow-up: 32 months

CMRI - RV ejection fraction

1-Clinical worsening (%)

Days to event

Log-rank $p = 0.0063$

Time (months)

$p < 0.001$

- Blue line: RVEF < 39%
- Red line: RVEF ≥ 39%
- Blue line: RVEF > 35%
- Red line: RVEF < 35%

Freed et al. JCMR 2012; 14:11.
CMRI - Myocardial delayed enhancement
CMRI - Myocardial delayed enhancement

Right ventricular insertion point-late gadolinium enhancement (RVIP-LGE)

Log-rank $p = 0.0065$

Days to event

1-Clinical worsening (%)

Total delayed enhancement mass (g)

Ventricular mass index

BNP as surrogate of RV function

* $p < 0.05$ vs control
† $p < 0.05$ vs RVVO

44 patients
18 - ASD (RVVO)
16 - CTEPH (RVPO)

Prognostic value of cardiac troponin T in PAH and CTEPH patients

Cumulative survival

Time (months)

Numbers at risk, n

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac troponin T (-)</td>
<td>48</td>
<td>43</td>
<td>33</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Cardiac troponin T (+)</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Conclusion

- Sir William Harvey 1616 – “De Motu Cardis”
 “Thus the right ventricle may be said to be made for the sake of transmitting blood through the lungs, not for nourishing them.”

- Paucity of knowledge regarding RV

- Understanding of RV adaptation to PH crucial for Tx.